2,463 research outputs found

    EVALUATING THE USE OF CAMERA TRAPS TO MONITOR POPULATIONS OF UNGULATE PREY IN THE RUSSIAN FAR EAST

    Get PDF
    Efforts to recover endangered carnivore populations are often limited by insufficient populations of prey. When recovering prey populations, estimates of population density are invaluable metrics to monitor recovery efforts. In Russia, wildlife managers use the Formozov-Malyushev-Pereleshin (FMP) snow tracking method to estimate densities of ungulate prey of the Amur tiger (Panthera tigris). Yet, increasing variability in snow conditions and other challenges have limited its reliability. Camera traps offer a promising alternative approach since managers already use cameras to monitor tigers. However, the assumptions and study design necessary to implement capture-recapture models for tigers are different from those needed to implement models for unmarked populations of prey. In Chapter 1, I estimated densities of wild boar (Sus scrofa), red deer (Cervus canadensis ssp. xanthopygus), roe deer (Capreolus pygargus), and sika deer (Cervus nippon) using Random Encounter models (REM), Space-To-Event models (STE), and Time-To-Event models (TTE), then compared these with FMP estimates within Sikhote-Alin Biosphere Zapovednik. Estimates from the STE and FMP were the most similar, though there were challenges implementing the STE to data from motion-trigger cameras. All models detected a \u3e90% decline in wild boar density due to African Swine Fever. Simulations indicated that greater survey effort for all camera-based methods would be required to achieve a coefficient of variation of 20% (an objective set for this study area in 2006). This is likely cost-prohibitive for many conservation programs due to the high costs of randomly deploying many cameras. To examine the influence of study design on detections of ungulate prey, in Chapter 2 I compared relative abundance indices (RAIs) of prey using: (1) cameras placed on roads to monitor tigers; (2) cameras placed using systematic random sampling; and (3) “off-road” cameras placed 150 meters away from road cameras. Both road and off-road RAIs were greater than random RAIs, and our attempt to approximate representative sampling with off-road cameras ultimately did not work. These results highlight the importance of random sampling to meet the assumptions of unmarked estimators. Detection data of prey species from cameras placed for tiger monitoring should not be used to estimate true abundance of prey species using these models

    A Search for the Optical Counterpart of the Luminous X-ray Source in NGC 6652

    Get PDF
    We examine images of the field of X1832-330, the luminous (Lx ~ 10^36 erg/s) X-ray burst source near the center of the globular cluster NGC 6652, in order to identify the optical counterpart for further study. U and B ground-based images allow us to set a limit M_B > 3.5 for the counterpart at the time of those observations, provided that the color is (U-B)_0 ~ -1, similar to the sources known in other clusters. Archival Hubble Space Telescope observations survey most but not all of the 1 sigma X-ray error circle, and allow us to set limits M_B > 5.9 and M_B > 5.2 in the WF/PC and WFPC2 regions, respectively. In the WF/PC images we do weakly detect a faint object with UV-excess, but it is located 11.7'' from the ROSAT X-ray position. This considerable (2.3 sigma) discrepancy in position suggests that this candidate be treated with caution, but it remains the only reasonable one advanced thus far. We measure for this star m_439 = 20.2 +- 0.2, (m_336 - m_439) = -0.5 +- 0.2, and estimate M_B = 5.5, (U-B)_0 = -0.9, similar to other known optical counterparts. If this candidate is not the identification, our limits imply that the true counterpart, not yet identified, is probably the optically-faintest cluster source yet known, or alternatively that it did not show significant UV excess at the time of these observations. Finally, we assess the outlook for the identification of the remaining luminous globular cluster X-ray sources.Comment: 15 pages including 5 figures and no tables. Accepted for publication in The Astronomical Journal; to appear in Volume 116, September 1998. A preprint with full resolution figures may be downloaded from http://www.astro.washington.edu/deutsch/pubs

    Dynamical Confirmation of SDSS Weak Lensing Scaling Laws

    Get PDF
    Galaxy masses can be estimated by a variety of methods; each applicable in different circumstances, and each suffering from different systematic uncertainties. Confirmation of results obtained by one technique with analysis by another is particularly important. Recent SDSS weak lensing measurements of the projected-mass correlation function reveal a linear relation between galaxy luminosities and the depth of their dark matter halos (measured on 260 \hinv kpc scales). In this work we use an entirely independent dynamical method to confirm these results. We begin by assembling a sample of 618 relatively isolated host galaxies, surrounded by a total of 1225 substantially fainter satellites. We observe the mean dynamical effect of these hosts on the motions of their satellites by assembling velocity difference histograms. Dividing the sample by host properties, we find significant variations in satellite velocity dispersion with host luminosity. We quantify these variations using a simple dynamical model, measuring \mtsd a dynamical mass within 260 \hinv kpc. The appropriateness of this mass reconstruction is checked by conducting a similar analysis within an N-body simulation. Comparison between the dynamical and lensing mass-to-light scalings shows reasonable agreement, providing some quantitative confirmation for the lensing results.Comment: 7 pages, 3 figures, accepted for publication in ApJ Letter

    Fire Promotes Arsenic Mobilization and Rapid Arsenic(III) Formation in Soil via Thermal Alteration of Arsenic-Bearing Iron Oxides

    Get PDF
    Arsenic in oxic surface soils readily associates with Fe(III) oxide minerals such as ferrihydrite and goethite, predominantly as As(V). Fires are a common feature in many landscapes, creating high-temperature soil conditions which drive thermal transformation of these As(V)-bearing minerals. However, it is unknown whether fire-induced transformation of ferrihydrite and goethite can alter the mobility of As, or alter As(V) speciation (e.g., via pyrolysis induced electron-transfer generating the more mobile and toxic inorganic As(III) species). Here, we subject an organic-rich soil (∌15% organic C) mixed (4:1) with As(V)-bearing ferrihydrite and goethite (total As of 2.8–3.8 ÎŒmol g-1), to various temperatures (200–800°C) and heating durations (5–120 min) and examine the consequences for As and Fe via X-ray absorption spectroscopy, X-ray diffraction, 57Fe Mössbauer spectroscopy and selective extracts. We show that heating transformed both ferrihydrite and goethite to mainly maghemite at temperatures >400°C and tended to increase exchangeable surface-complexed As (AsEx) in ferrihydrite yet decrease AsEx in goethite. We demonstrate for the first time that ferrihydrite and goethite-bound As(V) can be rapidly reduced to As(III) during heating of organic-rich soil. Electrons were readily transferred to both Fe(III) and As(V), with reduction of As(V) to As(III) peaking at intermediate temperatures and time periods (maxima of ∌88% for ferrihydrite; ∌80% for goethite). Although As(III) formation was fast (within 5–10 min at temperatures >400°C), it was followed by partial re-oxidation to As(V) at higher temperatures and longer time intervals. Additionally, combusted As-bearing ferrihydrite and goethite soil-mixtures display greatly enhanced (2–3 orders of magnitude) mobilization of inorganic As(III)aq species upon re-wetting with water. Mobilization of As(III)aq was positively correlated with solid-phase As(III) formation and was greater for goethite than ferrihydrite. These findings challenge the current prevailing view that As(V) reduction to As(III) in soil is mainly limited to waterlogged conditions and suggest that moderate-temperature fires of short duration in oxic soils, may generate substantial labile As(III) species and lead to a pulse of As(III)aq mobilization upon initial rainfall and re-wetting. Further investigation is recommended to explore the consequences for arsenic cycling in fire-prone natural landscapes and agricultural systems which involve controlled-burn practices

    The Full-sky Astrometric Mapping Explorer -- Astrometry for the New Millennium

    Get PDF
    FAME is designed to perform an all-sky, astrometric survey with unprecedented accuracy. It will create a rigid astrometric catalog of 4x10^7 stars with 5 < m_V < 15. For bright stars, 5 < m_V < 9, FAME will determine positions and parallaxes accurate to < 50 microarcseconds, with proper motion errors < 50 microarcseconds/year. For fainter stars, 9 < m_V < 15, FAME will determine positions and parallaxes accurate to < 500 microarcseconds, with proper motion errors < 500 microarcseconds/year. It will also collect photometric data on these 4 x 10^7 stars in four Sloan DSS colors.Comment: 6 pages, 4 figures, to appear in "Working on the Fringe

    SDSS J115517.35+634622.0: A Newly Discovered Gravitationally Lensed Quasar

    Full text link
    We report the discovery of SDSSJ115517.35+634622.0, a previously unknown gravitationally lensed quasar. The lens system exhibits two images of a z=2.89z = 2.89 quasar, with an image separation of 1{\farcs}832 \pm 0.007 . Near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Based on absorption features seen in the Sloan Digital Sky Survey (SDSS) spectrum, we determine a lens galaxy redshift of z=0.1756z = 0.1756. The lens is rather unusual in that one of the quasar images is only 0{\farcs}22\pm0{\farcs}07 (∌0.1Reff\sim 0.1 R_{\rm eff}) from the center of the lens galaxy and photometric modeling indicates that this image is significantly brighter than predicted by a SIS model. This system was discovered in the course of an ongoing search for strongly lensed quasars in the dataset from the SDSS.Comment: 18 pages, 6 figures. Accepted for publication in A

    The Sloan Digital Sky Survey Quasar Lens Search. II. Statistical lens sample from the third data release

    Get PDF
    We report the first results of our systematic search for strongly lensed quasars using the spectroscopically confirmed quasars in the Sloan Digital Sky Survey (SDSS). Among 46,420 quasars from the SDSS Data Release 3 (~4188 deg^2), we select a subsample of 22,683 quasars that are located at redshifts between 0.6 and 2.2 and are brighter than the Galactic extinction-corrected i-band magnitude of 19.1. We identify 220 lens candidates from the quasar subsample, for which we conduct extensive and systematic follow-up observations in optical and near-infrared wavebands, in order to construct a complete lensed quasar sample at image separations between 1" and 20" and flux ratios of faint to bright lensed images larger than 10^(−0.5). We construct a statistical sample of 11 lensed quasars. Ten of these are galaxy-scale lenses with small image separations (~ 1"-2") and one is a large separation (15") system which is produced by a massive cluster of galaxies, representing the first statistical sample of lensed quasars including both galaxy- and cluster-scale lenses. The Data Release 3 spectroscopic quasars contain an additional 11 lensed quasars outside the statistical sample

    Microscopic theory of the pseudogap and Peierls transition in quasi-one-dimensional materials

    Get PDF
    The problem of deriving from microscopic theory a Ginzburg-Landau free energy functional to describe the Peierls or charge-density-wave transition in quasi-one-dimensional materials is considered. Particular attention is given to how the thermal lattice motion affects the electronic states. Near the transition temperature the thermal lattice motion produces a pseudogap in the density of states at the Fermi level. Perturbation theory diverges and the traditional quasi-particle or Fermi liquid picture breaks down. The pseudogap causes a significant modification of the coefficients in the Ginzburg-Landau functional from their values in the rigid lattice approximation, which neglects the effect of the thermal lattice motion. To appear in Physical Review B.Comment: 21 pages, RevTeX, 5 figures in uuencoded compressed tar fil
    • 

    corecore